Searching for high magnetization density in bulk Fe: the new metastable Fe₆ phase.
نویسندگان
چکیده
We report the discovery of a new allotrope of iron by first principles calculations. This phase has Pmn2(1) symmetry, a six-atom unit cell (hence the name Fe6), and the highest magnetization density (Ms) among all the known crystalline phases of iron. Obtained from the structural optimizations of the Fe3C-cementite crystal upon carbon removal, Pmn2(1) Fe6 is shown to result from the stabilization of a ferromagnetic FCC phase, further strained along the Bain path. Although metastable from 0 to 50 GPa, the new phase is more stable at low pressures than the other well-known HCP and FCC allotropes and smoothly transforms into the FCC phase under compression. If stabilized to room temperature, for example, by interstitial impurities, Fe6 could become the basis material for high Ms rare-earth-free permament magnets and high-impact applications such as light-weight electric engine rotors or high-density recording media. The new phase could also be key to explaining the enigmatic high Ms of Fe16N2, which is currently attracting intense research activity.
منابع مشابه
Characterization of the metastable Cu-Fe nanoparticles prepared by the mechanical alloying route
Although Cu and Fe are immiscible under equilibrium conditions, they can form supersaturated solid solutions by mechanical alloying. In this paper, nano-structured of the metastable Cu-Fe phase containing 10, 15, 20 and 25% wt Fe were synthesized by intensive ball milling for 15h, in order to achieve a solid solution of Fe in Cu. The phase composition, dissolution of the Fe atoms into the Cu ma...
متن کاملMagnetic Properties and Metastable States in Spin-Crossover Transition of Co-Fe Prussian Blue Analogues
The combination of spin transitions and magnetic ordering provides an interesting structure of phase transitions in Prussian blue analogues (PBAs). To understand the structure of stable and metastable states of Co-Fe PBA, it is necessary to clarify free energy as a function of magnetization and the fraction of the high-temperature component. Including the magnetic interaction between high-tempe...
متن کاملSelf-nanoscaling of the soft magnetic phase in bulk SmCo/Fe nanocomposite magnets
Fabrication of bulk nanocomposite materials, which contain a magnetically hard phase and a magnetically soft phase with desired nanoscale morphology and composition distribution has proven to be challenging. Here we demonstrate that SmCo/Fe(Co) hard/soft nanocomposite materials can be produced by distributing the soft magnetic a-Fe(Co) phase particles homogenously in a hard magnetic SmCo phase ...
متن کاملA DETAILED STUDY TOWARD THE NANO -CRYSTALLIZATION OF α – Fe IN Fe55-X Cr18Mo7B16C4 BULK AMORPHOUS ALLOY
Crystallization of α – Fe phase during annealing process of Fe55Cr18Mo7B16C4 bulk amorphous alloy has been evaluated by X- ray diffraction, differential scanning calorimetric tests and TEM observations in this research. In effect, crystallization mechanism and activation energy of crystallization were evaluated using DSC tests in four different heating rates (10, 20, 30, 40 K/min). A two -st...
متن کاملHIGH TEMPERATURE TENSILE PROPERTIES OF NEW FE-CR-MN DEVELOPED STEEL
Nowadays, Ni-free austenitic stainless steels are being developed rapidly and high price of nickel is one of the most important motivations for this development. At present research a new FeCrMn steel was designed and produced based on Fe-Cr-Mn-C system. Comparative studies on microstructure and high temperature mechanical properties of new steel and AISI 316 steel were done. The results ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 27 1 شماره
صفحات -
تاریخ انتشار 2015